Mantle-derived trace element variability in olivines and their melt inclusions

Olivine is almost ubiquitous in primitive basalts, making it an excellent tool for investigating early phases of magmatic evolution and mantle melting conditions. For example, studies of olivine-hosted melt inclusions have provided crucial insights into primitive melt variability, deep magma mixing (e.g., Neave et al., 2013) and the behaviour of volatiles during magma transport from the mantle to the surface (e.g., Neave et al., 2012; 2014). It has also been proposed that the compatible trace-element (CTE) content of olivines themselves provides information about lithological heterogeneity in the mantle (e.g., Sobolev et al., 2007), though the causes of such CTE variability remain highly debated (e.g., Matzen et al., 2017).

In this paper with Oliver Shorttle and Martin Oeser, I present both CTE and incompatible trace-element (ITE) data from primitive Icelandic olivines that we use check the validity of melt inclusion records and investigate causes of geochemical variability in olivine macrocrysts themselves. We demonstrate that olivine macrocrysts are capable of preserving similar patterns of compositional variability to melt inclusions on intra- and inter-eruption lengthscales, and may allow degrees of magma enrichment to be reconstructed in samples where matrix glasses are degraded or absent.

An X-ray map of P in an olivine from the Stapafell eruption. Almost no P zoning can be observed in the olivine; boundary layer crystallisation seems unimportant. This image is approximately 1 mm across.

Although olivines from our enriched case study eruption, Stapafell, are slightly richer in Ni than those from our depleted case study eruption, Háleyjabunga, the CTE content of both eruptions are wholly consistent with melt supply from a peridotitic source. However, independent constraints from the combined major and trace element systematics of Icelandic basalts indicate that enriched melts come from a modally enriched source (Shorttle & Maclennan, 2011); enriched Icelandic basalts are too rich in iron to be derived by melting of depleted mantle. We therefore conclude that enriched domains in the Icelandic mantle are composed of modally enriched peridotite not pyroxenite, and that olivine CTE contents provide an incomplete picture of lithological heterogeneity in the mantle.


Neave, D.A., Shorttle, O., Oeser, M., Weyer, S. & Katsura, K. 2018. Mantle-derived trace element variability in olivines and their melt inclusions. Earth and Planetary Science Letters 483, 90–104.