Melt inclusion constraints on petrogenesis of the 2014–2015 Holuhraun eruption, Iceland

The 2014–2015 Holuhraun eruption in Iceland was the largest volume eruption on the island since the 1783–1784 Laki erution (e.g., Neave et al., 2013; 2017), and was one of the most closely monitored eruptions ever to have taken place (Gudmundsson et al., 2016). In this paper, lead by Margaret Hartley and Enikö Bali (who also recently published an associated paper), we present melt inclusion data from a suite of samples collected throughout the eruption.

Variability in melt inclusion compositions indicates that the erupted magma evolved from diverse primary melts by concurrent mixing and crystallisation. Using a refined method of olivine–plagioclase–augite–melt (OPAM) barometry, we place this evolution at mid-crustal depths, in agreement with geophysical indicators of magma storage. Re-equilibration of melt inclusion H2O contents indicates that crystals spent at least 1–12 days in their carrier liquid before eruption, consistent with lateral transport in a mid-crustal dyke from the Bárðarbunga central volcano to the eruption site.

A conceptual model for the entrapment of melt inclusions erupted during the 2014–2015 Holuhraun eruption. Figure from Hartley et al. (2018).

Publication

Hartley, M.E., Bali, E., Maclennan, J., Neave, D.A. & Halldórsson, S.A. 2018. Melt inclusion constraints on petrogenesis of the 2014–2015 Holuhraun eruption, Iceland. Contributions to Mineralogy and Petrology, 173: 10. <Open Access>

The effect of anorthite content and water on quartz–feldspar cotectic compositions in the rhyolitic system and implications for geobarometry

Since moving to Hannover, I have become involved in a number of exciting new projects. One project, lead by François Holtz and carried out by Sören Wilke, involved carrying out a large number of experiments to determine how variations in the anorthite (i.e. calcium) and water contents of rhyolites affects the position of quartz–feldspar cotectics. This is important because the position of quartz–feldspar cotectics can be used as a geobarometer, especially is systems lacking pressure sensitive minerals such as amphibole, but only if the effects of anorthite and water contents are appropriately accounted for.

Our experiments allowed us to define thermal minima and quartz–sanidine–plagioclase triple points on quartz–feldspar cotectics at various pressures, water contents and anorthite contents. This information was then used calibrate an empircal barometer (DEtermination of Rhyolite Pressures; DERP) to esimtate the storage pressure of rhyolitic glasses in equilibrium with quartz and at least one feldspar. DERP is calibrated in the range 50–500 MPa and for any H2O content. Importantly, our findings suggest that rhyolite-MELTS may underestimate the storage pressures of rhyolitic magmas. Bringing emprical and thermodynamic geobarometers into alignment thus represents a key next step in the investigation of rhyolitic magmas.

Publication

Wilke, S., Holtz, F., Neave, D. A. & Almeev, R. R. 2017. The effect of anorthite content and water on quartz–feldspar cotectic compositions in the rhyolitic system and implications for geobarometry. Journal of Petrology 58, 789–818.

A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones.

Pressure is one of the key intensive variables that controls magmatic phase equilibria, which thus raises the possibily of using mineral and melt compositions to estimate magma storage pressures from erupted products. Such estimations are crucial for addressing geological problems ranging from understanding crustal accretion through to interpreting signals of unrest at active volcanoes.

In this paper with Keith Putirka, I assess the performance of some commonly used barometers that exploit the pressure-sensitive incorporation of jadeite (Jd) into clinopyroxene. We find that many current barometers overestimate the pressure of phase equilibria experiments carried out on H2O-poor basalts at 1–7 kbar by up to 3 bar. Many published magma storage pressure estimates may thus need to be re-evaluated, and revised towards lower pressures.

In order to resolve the of barometer inaccuracy at low pressures, we thus present a newly calibrated Jd-in-clinopyroxene. Our new barometer is suitable for use on hydrous and anhydrous samples that are ultramafic to intermediate in composition. However, we do not recommend using the barometer at temperatures below 1100 °C and at oxygen fugacities above QFM+1 because of reduced accuracy under these conditions. The barometer reproduces its calibration data with a standard error of estimate (SEE) of 1.4 kbar, and tests performed using experiments on bastilc compositons confirm that it is significantly more accurate than previous models.

Calibration and test datasets used to develop and assess a new Jd-in-clinopyroxene barometer for use on ultramafic to intermediate compositions.

We apply our new barometer to a range previously studied eruptions from Iceland’s neovolcanic rift zones. Most eruptions preserve records of mid-crustal crystallisation at 2.6–3.6 kbar; only the highly primtive Borgarhraun eruption recrds crystallisation in the lower crust at 5.7 kbar. While some magma processing takes place immediately beneath Iceland’s central volcanoes, magma evolution under the island’s neovolcanic rift zones is thus strongly mediated by mid-crustal processes.

Spreadsheet for estimating P-T conditions from clinopyroxene-liquid equilibria

Clinopyroxene P-T Dec16

Publication

Neave, D.A. & Putirka, K.D. 2017. A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones. American Mineralogist 102.

Note that there is an erratum concerning a typographical error in the barometric equation published in this paper

Goldschmidt: Magma plumbing systems and plagioclase-hosted melt inclusions

In summer 2016, I presented two abstracts at Goldschmidt in Yokohama, Japan. In my invited contribution, I summarised how a range of petrological and geochemical observations can be combined to reconstruct magma plumbing system characteristics (slides). In my second contribution, I discussed the reliability of estimating magma volatile contents by measuring primitve plagioclase-hosted melt inclusions (slides).

Magma pluming systems in th EVZ.
Magma plumbing systems in the Eastern Volcanic Zone of Iceland.

 

AGU: Disentangling disequilibrium and tuning thermobarometers in Eastern Volcanic Zone of Iceland

At the end of 2015, I presented the following abstract at the AGU Fall Meeting in San Francisco. My contribution summarised the main findings of my work in Iceland so far and outlined my next research directions: calibrating new thermobarometric models optimised for mid-crustal pressures and performing new phase equilibria experiments on basalts in the 1–7 kbar pressure range. You can download a copy of my poster here.

The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash)

The environmentally impacting AD 1783–84 Laki eruption was the largest Icelandic eruption to have been directly obseved by humans (Thordarson et al., 1996). However, it is by no means unique in Iceland’s volcanic history: Thordarson & Höskuldsson (2008) note that over 50 eruptions >1 km3 in volume have taken place in Iceland since the end of the last glaciation. The 10 ka Grímsvötn tephra series, or Saksunarvatn Ash, which is distributed across the North Atlantic from Greenland to Germany, is thought to have been generated in a series of large, phreatomagmatic eruptions within the Grímsvötn volcanic zone at the end of the last glacial period (Grönvold et al., 1995; Thordarson, 2014). In this first petrological study of the tephra, we (a team from the universities of Cambridge, Manchester and Iceland) exploited the abundance of primitive crystals and melt inclusions in samples from Lake Hvítárvatn in central Iceland in order to investigate magma evolution and storage processes.

http://static-content.springer.com/image/art%3A10.1007%2Fs00410-015-1170-3/MediaObjects/410_2015_1170_Fig2_HTML.gif
Crystal textures in the 10 ka Grímsvötn tephra series from lake Hvítárvatn in central Iceland. a) zoning in plagioclase, b) melt inclusions in plagioclase, c) sector zoning in clinopyroxene and d) inclusions in olivine. Figure from Neave et al. (2015).

Following the approaches laid out by our recent work on Laki and Skuggafjöll, we defined evolved and primtive macrocryst assemblages in tephra samples, the latter of which was out of equilibrium with the matrix glass and probably derived from disaggregated crystal mushes (e.g., Halldorsson et al., 2008). High-anorthite plagioclase-hosted melt inclusions provided the first direct evidence for the supply of high-Mg#, incompatible trace element-depleted mantle melts to the base of the lithosphere in Iceland’s Eastern Volcanic Zone. Through the critical application of clinopyroxene-melt and melt barometers (Putirka, 2008; Yang et al., 1996) , we suggested that the primtive macrocryst assemblage formed within the mid-crust (4±1.5 kbar) and that the evolved assemblage formed in the shallow crust (<2 kbar) shortly before eruption. We showed, however, that clinopyroxene-melt equilibria are not well calibrated at conditions relevant for the tephra’s pre-eruptive storage. We therefore made the case for further exploration of basalt phase equilibria in the critical 1–7 kbar interval, which is a primary aim of my Humboldt Research Fellowship in Hannover.

Publication

Neave, D.A., Maclennan, J., Thordarson, T. & Hartley, M.E. 2015. The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash). Contributions to Mineralogy and Petrology 171, 21. <Open Access>

Crystal-melt relationships and the record of deep mixing and crystallisation in the AD 1783 Laki eruption, Iceland

Basaltic magmas are often assembled from a diversity of mantle melts that mix and crystallise en route to the Earth’s surface (Sobolev & Shimizu, 1993; Maclennan, 2008). Thus, before any attempt can be made at determining the depths of any pre-eruptive processes, it is essential to understand how melts and and crystals relate to each other.

In this paper, we investigated how the magma that fed the large and environmentally impacting AD 1783–84 Laki eruption was assembled. Olivine-hosted melt inclusion compositions revealed that concurrent mixing and crystallisation of variable mantle melts occurred deep within Laki plumbing system. Indeed, the presence of high-anorthite plagioclase compositions more primitive than any other crystal or melt inclusion composition measured confirmed that the difference components of the Laki lava cannot all be related to the carrier liquid by single liquid line of descent. Furthermore, crystal zonation patterns indicated that multiple crystal mush formation and disaggregation events took place prior to eventual eruption. Combining clinopyroxene-melt barometry with information from crystal textures indicates that most crystallisation took place within the mid-crust, the depth of much recent seismogenic magmatism in the Eastern Volcanic Zone of Iceland (Tarasewicz et al. 2012).

 

Syhthesis of deep magmatic processes in the Laki plumbing system. Modified from Neave et al. (2013)
Deep magmatic processes in the Laki plumbing system. Modified from Neave et al. (2013).

Publication

Neave, D.A., Passmore, E., Maclennan, J., Fitton, J.G. & Thordarson, T. 2013. Crystal-Melt Relationships and the Record of Deep Mixing and Crystallization in the AD 1783 Laki Eruption, Iceland. Journal of  Petrology 54, 1661–1690. <Open Access>