Petrology and geochemistry of the 2014–2015 Holuhraun eruption, central Iceland

The 2014–2015 Holuhraun eruption in Iceland was one of the most closely monitored and sampled basaltic fissure eruptions to have ever taken place. In this paper lead by Sæmundur A. Halldórsson and many other scholars from Iceland and beyond we present a comprehensive collection of glass, mineral and whole-rock data. The geochemistry of the eruption products firmly locate it within the Bárðarbunga volcanic system. By carrying out careful geothermobarometry, we infer that the magma was stored at 8 ± 5 km prior to eruption, in excellent agreement with independent petrological, geophysical and geodetic observations (e.g., Hartley et al., 2018; Gudmundsson et al., 2016). Although the erupted magma is extremely homogeneous in composition, complexity in its crystal cargo reveals that the it was ultimately assembled from heterogeneous mantle melts that underwent crystallisation and mixing in the lower- to mid-crust.

Backscattered electron (BSE) image of a complexly zoned clinopyroxene from the 2014–2015 Holuhraun lava.


Halldórsson, S.A., Bali, E., Hartley, M.E., Neave, D.A., Peate, D.W., Gudfinnson, G., Bindeman, I., Whitehouse, M., et al. Petrology and geochemistry of the 2014–2015 Holuhraun eruption, central Iceland: Compositional and mineralogical characteristics, temporal variability and magma storage. Contributions to Mineralogy and Petrology,173:64.